A Spiking Neural Bayesian Model of Life Span Inference

Sugandha Sharma (s72sharm @uwaterloo.ca)
Aaron R. Voelker (arvoelke @uwaterloo.ca)
Chris Eliasmith (celiasmith @uwaterloo.ca)

Centre for Theoretical Neuroscience, University of Waterloo
Waterloo, ON, Canada, N2L 3G1

Abstract

In this paper, we present a spiking neural model of life span
inference. Through this model, we explore the biological
plausibility of performing Bayesian computations in the brain.
Specifically, we address the issue of representing probabil-
ity distributions using neural circuits and combining them in
meaningful ways to perform inference. We show that applying
these methods to the life span inference task matches human
performance on this task better than an ideal Bayesian model
due to the use of neuron tuning curves. We also describe po-
tential ways in which humans might be generating the priors
needed for this inference. This provides an initial step towards
better understanding how Bayesian computations may be im-
plemented in a biologically plausible neural network.

Keywords: Neural Engineering Framework; biologically
plausible inference; neural bayesian model; expectation maxi-
mization

Introduction

Computations performed by the nervous system are subject
to uncertainty because of the influence of sensory, cellular,
and synaptic noise. At the level of cognition, the models that
the brain uses to interact with its environment must neces-
sarily cope with missing and imperfect information about the
world. Behavioral studies have confirmed that humans often
account for uncertainty in a way that is nearly optimal in the
Bayesian sense (i.e., “Bayes optimal”) (Ma, Beck, Latham,
& Pouget, 2006)). This implies that (1) neural circuits must,
at least implicitly, represent probability distributions, and (2)
neural circuits must be able to effectively compute with these
probability distributions in order to perform Bayesian infer-
ence near-optimally.

Probabilistic models based on Bayes’ rule have been
widely used for understanding human cognition including
inference, parameter and structure learning (Jacobs & Kr-
uschke, 2011), and word learning (Xu & Tenenbaum, 2007).
However, most Bayesian models lack biological plausibility
because it is unclear how these computations might be real-
ized in the brain. In particular, these models rely on sophis-
ticated computations including high-dimensional integration,
precise multiplication, and large-scale structure representa-
tion, without the use of spiking neuron models to implement
these necessary computations.

A biologically plausible Bayesian approach can provide
us insights into the working of the brain at multiple levels
of analysis (Eliasmith, 2013). Moreover, it can also help in
making more accurate normative predictions about how the
perceptual system combines prior knowledge with sensory
observations, enabling more accurate interpretations of data
from psychological experiments (Doya, 2007). And finally, it

can point the way towards approximate Bayesian algorithms
that are efficiently implemented in a neural substrate.

Griffiths, Chater, Norris, and Pouget (2012) conclude that
different theoretical frameworks, such as Bayesian model-
ing and connectionism, have different insights to offer about
human cognition, distributed across different levels of anal-
ysis. Here we make an initial attempt towards integrating
these frameworks. We explore the biological plausibility of
Bayesian inference by implementing a neural model of a life
span prediction task using the Neural Engineering Frame-
work (NEF; Eliasmith & Anderson, 2003). We answer ques-
tions about how probability distributions can be represented
in a connectionist framework using spiking neurons, and how
the neural representations of these probability distributions
can be used in meaningful ways. The next section describes
the life span prediction task which we use.

Life span prediction task

Griffiths and Tenenbaum (2006) evaluate how cognitive judg-
ments compare with optimal statistical inference by asking
people to predict human life spans. A group of 208 people
were asked to predict human life spans, after being presented
by a question in survey format as given below:

“Insurance agencies employ actuaries to make predictions
about people’s life spans — the age at which they will die
based upon demographic information. If you were assessing
an insurance case for an 18-year-old man, what would you
predict for his life span?”

The responses were recorded and compared with the pre-
dictions made by a Bayesian model.

Bayesian model

If #;4;4; indicates the total amount of time the person will live
and 7 indicates his current age, the task is to estimate #;,
from ¢. The Bayesian model computes a probability distribu-
tion over t,,4 given t, by applying Bayes’ rule:

p([lotal|t) = p(t|tt0tal)p(ttolal)/p(t)7 (D

where:

1) = /0 (10t P trorat) diroral @)

We assume that the maximum age is 120 years. Thus,
when calculating p(r) in practice, the integral may be com-
puted from O to 120.

3131

Prior Griffiths and Tenenbaum (2006) use publicly avail-
able real-world data to identify the true prior distribution
P(tiorar) over life spans (shown in Figure 1A).

Likelihood The likelihood p(#|t;q) is the probability of
encountering a person at age ¢ given that their total life span is
torql- Griffiths and Tenenbaum (2006) assume for simplicity
that we are equally likely to meet a person at any point in his
or her life. As aresult, this probability is uniform, p(¢|t;pra1) =
1/totai, for all t < 5147 (and O for ¢ > ty4101).

Prediction function Combining the prior with the likeli-
hood according to Equation 1 yields a probability distribu-
tion p(f;pqr|t) over all possible life spans #,,, for a person
encountered at age . As is standard in Bayesian predic-
tion, Griffiths and Tenenbaum (2006) use the median of this
distribution—the point at which it is equally likely that the
true life span is either longer or shorter—as the estimate for
toral- This identifies a prediction function that specifies a pre-
dicted value of #;,;, for each observed value of ¢.

Results Results obtained by Griffiths and Tenenbaum
(2006) through this Bayesian model are shown in Figure 1B.

(A) (B) 200
: g
Life RE
Spans 5 :
o= e '
58 3
m @ .
o8 a
x £
L (|| S
0 40 80 120 0 50 100

tiota Values t values

Figure 1: (A) Empirical distribution of the total life span
tioral- (B) Participants’ predicted values of #,,,; for a single
observed sample ¢. Black dots show the participants’ median
predictions for #;,,. Solid line shows the optimal Bayesian
predictions based on the empirical prior distribution shown in
A. Dotted lines show predictions based on a fixed uninforma-
tive prior. Note: the fit between the human predictions (black
dots) and Bayesian predictions (solid line) looks spot on in
this figure due to the compressed y-axis, but Figure 4b shows
a zoomed version revealing that this is not the case. Adapted
from Griffiths and Tenenbaum (2006).

Neural Engineering Framework

The Neural Engineering Framework (NEF) is based on three
principles—representation, transformation, and dynamics—

which are used to construct large-scale neural models. The
first two principles are described in the following sections.
The principle of representation also describes how probability
distributions can be represented using spiking neurons. The
third principle is not required for this paper, and its details
can be found elsewhere (Eliasmith & Anderson, 2003).

Principle 1 — Representation

In the NEF, information is represented as time-varying vec-
tors of real numbers by populations of neurons. We say that a
population of neurons has activities a;(x), which encode an n-
dimensional stimulus vector, X = [x1,x2,...,X,], by defining
the encoding:

ai(x) = G;[Ji(x)], 3)

where G;[-] is the nonlinear transfer function describing the
neuron’s spiking response, and J;(x) is the current entering
the soma of the neuron. For the purpose of our model, we
have chosen G; [-] to be the leaky integrate-and-fire (LIF) neu-
ron model. The soma current is defined by:

Ji(x) = o (e7,X),, +JI', 4)

where J;(x) is the current in the soma, a; is a gain and con-
version factor, x is the stimulus vector to be encoded, e;
is the encoding vector which corresponds to the “preferred
stimulus” of the neuron—consistent with the standard idea
of a preferred direction vector (Schwartz, Kettner, & Geor-
gopoulos, 1988)—and]ib’"” is a bias current that accounts
for background activity. The notation (-,-), indicates an n-
dimensional dot-product.

Given this encoding, the original stimulus vector can be
estimated by decoding those activities as follows:

X = Zai(x)di. (5)

The decoding vectors d; (also known as “representational
decoders”) are typically found in the NEF by least-squares
optimization, which we use here (Eliasmith & Anderson,
2003). Thus, the decoders resulting from this optimization
complete the definition of a population code over a set of neu-
rons i for the representation of x. The code is defined by the
combination of nonlinear encoding in Eq. 3 and weighted lin-
ear decoding in Eq. 5.

Temporal representation The population code does not
explicitly address the issue of how information is encoded
over time. To do so, we can begin by considering the tem-
poral code for each neuron in isolation by taking the neural
activities to be filtered spike trains as shown in Eq. 6:

a,-(t):Zh,-(t)*5(t—tm):Zhi(t—tm)7 (6)

where §;(-) are the spikes at time 7, for a given neuron i,
generated by G;[-] and h;(¢) are the linear decoding filters.
We can compute the optimal filters for decoding using the
NEF, however to make our model biologically plausible, we

3132

have chosen these filters (h;(2)) to be the postsynaptic currents
(PSCs) induced in subsequent neuron by the arrival of a spike.
Eliasmith and Anderson (2003) have shown that this assump-
tion causes minimal information loss which can be further
reduced by increasing the population size.

This temporal code can be combined with the population
code defined before (Egs. 3, 4, 5), to provide a general popu-
lation temporal code for vectors. The encoding and decoding
equations for such a code are given by Eq. 7 and Eq. 8:

S(I _tim) = Gi |:(Xl' <ei7X>n +Jihias (7)
&= Y hilt —tm)d;. ®)

Representing probability distributions Probability distri-
butions are essentially functions of some parameters. Having
described how to represent vectors using the NEF, we con-
sider the relationship between vector and function representa-
tion. For any representation, we need to specify the domain of
that representation. In case of vectors, the domain is the sub-
space of the vector space that is represented by the neurons
(e.g., the x vector). We define the relevant function domain
by parameterizing the set of represented functions by an n-
dimensional vector of coefficients k = [k;,kz,...,k,]. These
define any function of interest over a fixed set of basis func-
tions ¢(v) as follows:

k)= ilqu»(u),

Thus we define a particular probability distribution p(k) by
limiting the space spanned by the basis ¢(v) to some sub-
space of interest depending on the application. This is also
the domain over which the optimization to find the decoders
in Eq. 5 is performed.

Next, we define population encoding and decoding analo-
gous to that in Eqs 3 and 5 for functions:

ai(x(v;k))

for k ~ p(k). 9

= ai(k) = G; [oc,- (e:(v),x(v:K)), + 77| (10)

K) =Y ai(K)d(v), (1)

where e;(v) and d;(v) are the encoding and decoding func-
tions of the neurons. We project these functions onto the same
basis ¢(v) used to identify the function space. For simplic-
ity, we assume that ¢(v) is an orthonormal basis — an anal-
ogous derivation for a bi-orthonormal set can be found else-
where (Eliasmith & Martens, 2011). Hence, we get the fol-
lowing encoding and decoding functions:

(0) =Y eijo;(v) (12)
=i

v) = Y dijo; (), (13)
=

where ¢;; and d;; identify the n coefficients that represent

the encoding and decoding functions in ¢(v) basis for each
neuron. We now substitute these into Eq 10:

(ancpn)€imOm()) + g

:Gi (Zk €im mn) +Jibias
(Zk em) Jbias:|

=G oc, (er.k), Jb"”}.

a;(x(v;k)) = G;

(14)

This way, function encoding is expressed as vector encod-
ing identical to Eq. 7. Similarly, function decoding can also
be expressed as vector decoding as follows:

R:Zai(k)d,‘. (15)

To summarize, we have shown that it is mathematically
equivalent to talk in terms of (finite-dimensional) function
spaces or (finite-dimensional) vector spaces. Since probabil-
ity distributions are most generally functions, we can approx-
imate them as high-dimensional vectors over a fixed set of
basis functions using the NEF.

Principle 2 — Transformation

Transformations of neural representations are functions of the
vector variables represented by neural populations.

To perform a transformation f(x) in the NEF, instead of
finding the representational decoders d; to extract the orig-
inally encoded variable x, we can re-weight the decoding
to specify some function f(x) other than identity. In other

words, we can find the decoders dif (x) (also known as “trans-
formational decoders”) by using least-squares optimization
to minimize the difference between the decoded estimate of
f(x) and the actual f(x), which results in the transformation:

X = Zai(x)d{m. (16)

Both linear and nonlinear functions of the encoded vector
variable can be computed in this manner (Eliasmith & An-
derson, 2003). In the NEF, connection weights between neu-
rons can be defined in terms of encoders and decoders as:
W;; = oje jdlf (X), where i indexes the presynaptic population,

(x)

Jj indexes the postsynaptic population, and dlf are represen-

tational or transformational decoders.

Neural model of life span prediction

Figure 2 shows the architecture of the neural model for
life span inference built using the NEF. All neural ensem-
bles (populations of neurons; symbolically represented by
five circles) are 20 dimensional and contain 200 LIF neu-
rons each, except the Normalized Posterior ensemble which
is 120 dimensional and contains 800 LIF neurons. The

3133

likelinood input

Likelihood
—_—— -
Prediction
— Product i ;
Normalized Posterior
prior input <
Prior

Figure 2: A schematic diagram of the neural model. Here
“Likelihood” and “Prior” contain 200 neurons each, “Prod-
uct” network contains 4000 neurons and ‘“Normalized Poste-
rior” contains 800 neurons.

product network computes an element-wise product of its
inputs. Though multiplication is nonlinear, it has a well-
characterized implementation in neurons that does not require
nonlinear interactions, and can be implemented accurately
with the NEF (Gosmann, 2015). The product network makes
use of this characterization. It has 40 neural ensembles of 100
neurons each for a total of 4,000 neurons. The entire model
contains 5,200 neurons.

To represent the probability distributions (prior and likeli-
hood) needed to perform the task, we define a basis ¢29(v) to
span the space of each distribution. To compute the basis we
sample from a family of 120 dimensional distributions and do
Singular Value Decomposition to obtain a 20 dimensional ba-
sis. This basis is used to determine the encoders (as given by
Eq. 12) used in the NEF simulation. The same basis is used
for the optimization to find the neuron decoders (as given by
Eq. 13) that are needed to perform the desired computations.
Similar to the encoding and decoding functions, the 120 di-
mensional prior and likelihood functions are also projected
to the 20 dimensional space through weights over the basis.
Refer to the supplemental material for details.

The likelihood_input and prior_input are nodes that pro-
vide the named 20 dimensional inputs to the neural ensem-
bles Likelihood and Prior respectively. The product network
receives input from these ensembles and computes the pos-
terior distribution (in the 20 dimensional space). The out-
put connection from product network to Normalized Poste-
rior reconstructs the posterior back to 120 dimensional space
and computes the normalization function using principle 2
of the NEF. Thus, the Normalized Posterior ensemble rep-
resents the normalized posterior distribution. Next we ap-
proximate the median of this distribution on the connection
between the Normalized Posterior ensemble and the Predic-
tion node (again using principle 2). We read out the model
prediction from the Prediction node.

Figure 3 shows the inference results obtained from the
spiking neural network run in the Nengo (Bekolay et al.,
2014) software package. Model predictions are plotted for
current ages (¢) from 1 to 100. The difference between the
results in Direct mode and Neuron mode is due to the limited
number of neurons in the Normalized Posterior ensemble. As
the number of neurons in this ensemble increases, the results

105 I
--- Human predictions

_ 100 Direct mode (no neurons)
£ 95} Neural model predictions
90
©
9 g5
Q
T 80
Q
o v~ s
70 "
65
0 20 40 60 80 100
t values

Figure 3: Inference results from neural model (95% con-
fidence intervals), compared to humans and Direct mode -
our model with computations in low-dimensional (20 dimen-
sional basis) space, but without neurons.

approach the Direct mode results (800 neurons provide the
best fit to human data). Thus, neural results match the human
data better due to the approximate representation of the nor-
malized posterior by the neurons in the Normalized Posterior
ensemble. The tuning curves of the neurons in this ensemble
were fit to a function space consisting of a family of distribu-
tions which have three parameters (similar to the parameters
in the prior) and also depend on the current age (¢) (similar to
the likelihood function). The three parameters: a - the skew-
ness parameter was varied from -7 to -4, scale - used to scale
the distribution was varied from 26 to 29 and loc - used to
shift the distribution was varied between 49 to 101. The cur-
rent age () was varied in the range of +/-5 for a given age in a
trial except ages below 5 for which the range was taken to be
from [1, 10]. This provides the function space that was used
to sample the encoders for Normalized Posterior ensemble.

We use the Kolmogorov-Smirnov (K-S) test to examine
the goodness of fit of the neural model predictions relative
to the Griffiths and Tenenbaum (2006) model. The data
used for the K-S test are shown in Figure 4b. The dissimi-
larity of the Griffiths and Tenenbaum (2006) model relative
to human predictions is 9.628, while that of the neural model
is 1.959, indicating the much closer fit of the neural model
to the human data. Figure 4a shows a comparison between
the Griffiths and Tenenbaum (2006) model, the computational
model (our replication of their model), and direct mode (our
model with computations in a compressed 20 dimensional
space, but without neurons). Since the results obtained from
the direct mode are the same as the computational model,
the low dimensional embedding is not losing any informa-
tion. However, we expect some error due to this constraint
for more complex priors (though we have not explored the
minimum dimensionality for this prior).

Overall, our results suggest that the closer fit of the neu-
ral data can be solely attributed to fitting the neuron tuning

3134

105
—— Computational model

100 —— pirect mode (no neurons)

ggs e Tenenbaum et al. model
=
©
2
©
§®)
(O]
|
o
70
0 20 40 60 80
t values

(a) No error due to low dimensional embedding.

100

100
—e— Human predictions

95 —=— Tenenbaum el al. predictions
—=— Neural model predictions

90
85

80

Predicted ¢,

75

70
10 20 30 40 50 60 70 80 90 100
t values

(b) Data used for the goodness of fit test.

Figure 4: (a) Results from Griffiths and Tenenbaum (2006) model (only data corresponding to human data), Computational
model i.e., our replication of their model, and Direct mode i.e., our model with computations in low-dimensional space, but
without neurons. (b) Kolmogorov-Smirnov (K-S) test results. Dissimilarity relative to human predictions - Griffiths and Tenen-
baum (2006) model: 9.628, neural model: 1.959. Neural model and human data are median predictions. Note: Griffiths and
Tenenbaum (2006) model data and human data were obtained from Figure 1B through a web plot digitizer.

curves in the Normalized Posterior ensemble, where 800 neu-
rons provide the best match to human performance. Since
the low-dimensional neural implementation can be made to
match the human data, this is some evidence in support of
the hypothesis that human brains represent low-dimensional
state spaces (low-dimensional parameterizations of high-
dimensional distributions fit using neural tuning curves).

Generalized life span inference

In our neural model, we use the prior obtained empirically
by Griffiths and Tenenbaum (2006). However, our neural
modeling methods can further be used to explore how this
prior might be learned in the human brain. Here, we lay some
theoretical ground work for addressing this question, while
building the complete neural model remains for future work.

We assume that priors that humans have about life spans
are a result of their experiences encountering people of dif-
ferent ages in their daily lives. Thus the prior will be inferred
from the data that comes from daily experience. We further
assume that the prior is parameterized by some unknown hy-
perparameters (ot) which are to be estimated from the ob-
served ages of n distinct people, given by X = {x1,...,x,}.
Here, each random variable x; corresponds to a separate t
from the previous model. Likewise, we model each element
of X as being drawn independently from each element of
Z = {z1,...,zy} corresponding to the (unknown or hidden)
life spans of these same n people. Each random variable
z; corresponds to a separate #,, from the previous model,
which in turn is drawn from the unknown prior. We now de-
scribe two standard methods for determining a prior by ob-
taining an estimate & of the hyperparameters.

If we do not know the actual prior, then the optimal so-
lution can be found by trying them all. That is, we directly
find the hyperparameters ¢ that maximize the marginal like-

lihood of the observed data, L(a; X) (or equivalently the log-
likelihood for numerical stability):

n
O = argmax, L(a; X) = argmax, Z 10g2p(x,-,z,-|a).
i=1 zZi
a7

In general, however, the procedure described above is in-
tractable, since it requires that we iterate over all combina-
tions of o and Z. This motivates near-optimal iterative proce-
dures such as the widely-used expectation maximization al-
gorithm (EM; Dempster, Laird, & Rubin, 1977). Below we
work out the details of the EM procedure for the case where
the hyperparameters are o = (u,6?2), i.e., the prior is assumed
to be normally distributed with unknown moments. We begin
by simplifying the expectation function using independence
and other known facts about the model:

Q(OL\OLO)) = Eyix o) [log L(o; X, Z)]

EZi|Xiq0<([) [lOgL((X;Xi,Zi)}

i=1

iZT(xi’Zi) log (p(zi|) /zi)

=1 z

(18)

where we have defined T'(x;,z;) := p(zi|x;,a)) to be some
fixed function with respect to a"). Next, we simplify the log
expression using our model of the prior:

1 _Gw?
log (p(zi|a) /zi) = log e 22 | —logz
o V2on " a9)
1
=5 ((zi—u)*/o* +1logo? +log (21) +2logz;) ,
and then differentiate this with respect to u:
dlo o) [z
M = (Zi _Iu)027 (20)

ou

3135

and with respect to 6%

Noeel)) ey —o?) jo. 21

By linearity of differentiation, we then know that the deriva-
tives of Q(+) are zero when:

(X (1
| ZZT)Cl,Zz) 2 =0
i=1 zi (22)
— = Yy EZi ail (xi2i) and similarly:
Y X, T(xiz) 7 ’
00 (oot
o) Y Y Tz (e —0%) /o =0
i=1 z
— o= Y Xy (i _'U)ZT(xi’Zi)
X T (xi,2i)
(23)

Finally, by the generalized Bayes’ rule, we know:

p(zixilol))

Ay) =
i Xis O =)
p(zil) Zzip(Zi’xila(’))

T(x,-,zi) =

which we may compute via Eq. 1. We also note that since
T(-) is a probability density function over z;, that:

Xn:ZT(xi,z,-) = il =

i=1 zi i=1

Therefore, each EM iteration must make the update ol =
(ut) 6+ where:

t+1 12”22 %P z,,x,|0c
nt:l Zl’xl|(x)

S+ \/ Zz, 2 —

This converges to some locally optimal estimate of the hyper-
parameters. For initial o) chosen sufficiently close to global
optimum & given by Eq. 17, this converges to the optimum.
This provides a tractable procedure for updating the prior.
In particular, we begin with some initial guess at the hyper-
parameters, and then update them iteratively to better explain
the observed data. In practice only a few iterations are re-
quired (results not shown). Once we have an estimate of the
hyperparameters (&), we then know the prior p(#;514;|&). This
prior can be used directly by the previously described model
to provide a good prediction. In fact, it is possible to run both
the prior optimization and inference at the same time, and
both will become progressively more accurate over time.

(24)

t+1))2p<zi7-xi‘(x<t))
Y., p(zi,xia®)

Conclusions
We have presented a spiking neural network able to effec-
tively perform Bayesian inference in a manner that more
accurately matches human behavior than an ideal Bayesian

computation. We constructed the network using the NEF to
map function spaces into vector spaces and approximate the
necessary computations. We suggested a means of estimating
the prior for the life span task that can be implemented using
these same methods.

Notes Supplemental material (scripts and derivations) can
be found at https://github.com/ctn-waterloo/cogscil 7-infer.

Acknowledgments

This work was supported by CFI and OIT infrastructure fund-
ing, the Canada Research Chairs program, NSERC Discov-
ery grant 261453, ONR grant N000141310419, AFOSR grant
FA8655-13-1-3084, OGS, and NSERC CGS-D.

References

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart,
T. C., Rasmussen, D., ... Eliasmith, C. (2014). Nengo: a
Python tool for building large-scale functional brain mod-
els. Frontiers in neuroinformatics, 7, 48.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Max-
imum likelihood from incomplete data via the EM algo-
rithm. Journal of the royal statistical society. Series B
(methodological), 1-38.

Doya, K. (2007). Bayesian brain: Probabilistic approaches
to neural coding. MIT press.

Eliasmith, C. (2013). How to build a brain: A neural archi-
tecture for biological cognition. Oxford University Press.

Eliasmith, C., & Anderson, C. H. (2003). Neural engineer-
ing: Computation, representation, and dynamics in neuro-
biological systems. MIT press.

Eliasmith, C., & Martens, J. (2011). Normalization for prob-
abilistic inference with neurons. Biological cybernetics,
104(4), 251-262.

Gosmann, J. (2015). Precise multiplications with
the NEF [Technical Report]. = University of Water-
loo, Waterloo, Ontario, Canada. Retrieved from
http://dx.doi.org/10.5281/zenodo.35680

Griffiths, T. L., Chater, N., Norris, D., & Pouget, A. (2012).
How the Bayesians got their beliefs (and what those beliefs
actually are): comment on bowers and davis (2012).

Griffiths, T. L., & Tenenbaum, J. B. (2006). Optimal predic-
tions in everyday cognition. Psychological science, 17(9),
767-773.

Jacobs, R. A., & Kruschke, J. K. (2011). Bayesian learning
theory applied to human cognition. Wiley Interdisciplinary
Reviews: Cognitive Science, 2(1), 8-21.

Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2000).
Bayesian inference with probabilistic population codes.
Nature neuroscience, 9(11), 1432—-1438.

Schwartz, A. B., Kettner, R. E., & Georgopoulos, A. P.
(1988). Primate motor cortex and free arm movements to
visual targets in three-dimensional space. I. Relations be-
tween single cell discharge and direction of movement. The
Journal of Neuroscience, 8(8), 2913-2927.

Xu, F., & Tenenbaum, J. B. (2007). Word learning as
Bayesian inference. Psychological review, 114(2), 245.

3136

