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Abstract

This paper presents a computational model of word learning.
A model of such kind can give us insight into how humans
learn words and also help us design artificial intelligence sys-
tems that can learn words based on similar computational prin-
ciples. The challenge is to implement a model which learns the
meanings of words and is also able to generalize them to other
words. In this paper, I have used the Bayesian Framework
to accomplish this by replicating the model proposed by Xu
& Tenenbaum (2007). I found that the model’s behaviour is
qualitatively and quantitatively similar to people’s patterns of
generalization when an appropriate hypothesis space and prior
are used.
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Introduction
Word learning is an important area of research since it can
give us insights into how our brain is able to learn word ex-
tensions so effectively and efficiently. This can further lead
us to understand how we learn language and answer ques-
tions like “why are childrent better at learning languages than
adults?”. Finding the computational principles behind word
learning can also help us design and improve artificial intel-
ligence systems which are adept at using and learning lan-
guage.

Background
Researchers have been trying to explore computational ap-
proaches to how humans learn the meanings of words since
long. Hypothesis elimination and associative learning are the
two theories which have been dominant in the literature about
how word learning works (Fazly et al., 2010). In the hypothe-
sis elimination approach, learning process involves eliminat-
ing incorrect hypothesis about word meanings until conver-
gence to a single consistent hypothesis. For example, Siskind
(1996) presented an efficient algorithm which kept track of
just the necessary and possible components of word meaning
hypothesis which were consistent with a set of examples. A
weakness of this approach is that some logically possible hy-
pothesis or concepts cannot be recovered once they are elim-
inated. Moreover, even after ruling out all hypothesis incon-
sistent with a given labelled example, a learner will still be
left with many consistent hypothesis. For example if some-
one says to a child while pointing at a Dalmatian dog “look
Max is running away”, how would the child know whether
Max refers to only that particular dog, to all dogs, or to all
animals?. This is the problem of inference in a hierarchical
taxonomy which poses the problem of learning with overlap-
ping hypothesis about a given word and what it refers to. The
hypothesis elimination approach fails to solve this problem of

learning words with overlapping hypothesis. An example of a
hierarchical taxonomy is shown in Figure 13 in the appendix.

Another approach to word learning is associative learn-
ing, an example of which was shown in a model by Yu
(2005). They studied a word-object association model in a
unified framework of lexical and category learning and their
model demonstrated the emergence of patterns observed in
early word learning. Most of the people following the asso-
ciative learning approach use connectionist networks (Burns
et al. (2003); Smith (2000)). Through the use of internal
layers of hidden units and appropriately designed represen-
tations, these models are able to produce generalizations of
word meanings that go beyond the direct word-percept asso-
ciations. It is not clear however that the associative models
can solve the overlapping hypothesis problem mentioned be-
fore (Xu & Tenenbaum, 2007). For example, given a word
‘animal’ it can refer to a dog, a particular kind of dog e.g.,
‘dalmatian’ or to another animal. However, one standard
mechanism in associative models is that the models implic-
itly assume that a positive example of one word is a negative
example of every other word. Some of these models also fail
to explain how multiple words can apply to a single object,
since they use competition among outputs to implement the
implicit negative evidence e.g., MacWhinney (1998).

Computational approach followed
Xu & Tenenbaum (2007) have argued that the problem of
learning overlapping word meanings from sparse positive ex-
amples can be solved by a Bayesian approach to word learn-
ing which combines prior knowledge with the observed ex-
amples of a word’s referents.

It has been found that adults show a basic level bias i.e.,
they map common nouns preferentially to basic level cate-
gories (Rosch et al., 1976). Basic level categories are clus-
ters of intermediate size eg., category of dogs, that maximize
many different indices of category utility relative to subor-
dinate (e.g., dalmatians) or superordinate (e.g., animal) cat-
egories that contain them. However, children do not show a
strong basic-level preference when taught unfamiliar words
(Xu & Tenenbaum (2007); Callanan et al. (1994)). This sug-
gests that a basic level bias might not be a part of foundations
of word learning, but such a bias might develop as children
learn more about general patterns of word meanings and how
words tend to be used.

To explain this further, lets assume a learner has a taxo-
nomic hypotheses space with basic, superordinate and subor-
dinate categories (shown in Figure 13 in the appendix). Lets
also assume that this learner has a preference for labeling ba-
sic level categories. If this learner is shown Max the Dalma-



tian, labelled as ‘fep’, he might reasonably guess that ‘fep’
refers to all dogs. Now, lets say that the learner observes
three more objects labeled as ‘feps’ each of which is also a
Dalmatian. After seeing these three additional examples, no
potential hypothesis can be ruled out as inconsistent that were
not inconsistent after seeing the first one. However, these ad-
ditional examples make the word ‘fep’ seem relatively more
likely to refer to just Dalmatians than to all dogs. It would
be surprising to observe only Dalmatians called ‘feps’ if the
word referred to all dogs and if the four examples were a ran-
dom sample from the world. This intuition can be captured
by a Bayesian inference mechanism that scores alternative
hypothesis about a word’s meaning based on how well they
predict the observed data and how they fit with the learner’s
expectations.

The aim of my project is to replicate the Bayesian model
for word learning proposed by Xu & Tenenbaum (2007). My
focus is on replicating the foundations of word learning i.e.,
learning without any basic level bias, and then adding in the
bias to see its effect. I propose to first build a relatively sim-
ple model with a small taxonomic hypothesis space shown in
Figure 1, and then extend the model to the full taxonomic hy-
pothesis space shown in Figure 2 (Xu & Tenenbaum, 2007).
In the rest of this paper, I will present the methodology I used
to implement the model including the algorithms used and de-
sign decisions made. This will be followed by describing the
results obtained and their comparison to the experimental data
and to the model built by Xu & Tenenbaum (2007). Lastly,
I will finish with a discussion on the model performance and
potential future work.

Figure 1: A small taxonomic hypothesis space. Letter codes
refer to specific clusters i.e., hypothesis for word meanings.

Methodology
The aim of this project was to build a computational model
that is able to learn a single novel word C from a few exam-
ples. Lets assume that X = x1, ...xn are a set of n observed
examples of the novel word C (the examples are drawn from
a known domain of entities). The two goals then are:

• Given X examples of word C, the model should be able to
figure out which hypothesis is the true meaning of the word

Figure 2: The full taxonomic hypothesis space obtained by
hierarchical clustering of human similarity judgments. Letter
codes refer to specific clusters i.e., hypothesis for word mean-
ings: vegetables (EE), vehicle (HH), animal (JJ), pepper (J),
truck (T), dog (R), green pepper (F), yellow truck (G), and
Dalmatian (D). The numbers below the x-axis indicate the
domain of entities from which the examples are drawn. The
position of these examples on the plot indicates the hypothe-
ses/categories to which they belong. (Xu & Tenenbaum,
2007)

C.

• The model should be able to generalize what it learns.
For example, once it has found the true meaning of word
C, given another example ’y’ it should be able to decide
whether ’y’ belongs to the extension of C.

I assume that the learner has access to a hypothesis space
H of possible concepts and a probabilistic model relating hy-
potheses h ∈ H to data X. This hypothesis space is shown in
Figure 2 and was obtained experimentally by Xu & Tenen-
baum (2007). Each internal node of the tree corresponds to
a cluster of entities that are more similar to each other on
average, than to nearby objects. The height of each node rep-
resents the average pairwise dissimilarity between the objects
in that cluster and the length of the branch above each node
indicates cluster distinctiveness i.e., how much more similar
are that cluster’s members to each other on average than to ob-
jects in the nearest cluster. Each hypothesis h points to some
subset of entities in the domain that is a candidate extension
for C. I also assume that the learner is capable of identify-
ing which entities fall under each hypothesis i.e., extension
of each hypothesis. The Bayesian learner evaluates all hy-
potheses according to Bayes’ rule by computing their poste-
rior probabilities, given examples X. The posterior probabil-
ities are proportional to the product of the prior probabilities
and likelihoods and are given by equation 1.



p(h|X) = p(X |h)p(h)/p(X) (1)

Prior
The prior p(h), in combination with the hypothesis space it-
self represents the learner’s expectations about the plausible
meanings of the word C, independent of the observed exam-
ples X. It is easier for the learner to distinguish between the
clusters that are relatively more distinct. For example, it is
easier to distinguish a cat from a dog than to distinguish two
dogs of different types (e.g., a Labrador and a Dalmatian).
Thus this preference for cluster distinctiveness is captured in
the prior by taking the prior to be proportional to the branch
length of each node as given by equation 2.

p(h) ∝ height(parent[h])−height(h) (2)

Likelihood
The likelihood p(X |h) captures the statistical information
from the observed examples i.e., the expectations about
which entities are likely to be observed as examples of C
given a particular hypothesis h about C’s meaning.

Likelihood is computed based on the size principle as given
by equation 3 if xi ∈ h for all i, and 0 otherwise. The assump-
tion here is that the observed examples are independent and
each hypothesis has a finite size i.e., finite number of entities
that belong to it. Consider a hypothesis which consists of K
entities. The likelihood of picking any one entity at random
from this set of size K would be 1/K, and 1/Kn for n objects
sampled with replacement.

The likelihood is thus based on the size of extension of
each hypothesis. Though we do not have access to the ”true”
size of the hypotheses, e.g., set of all dogs in the world, we
can use the within cluster dissimilarity i.e., the cluster height
in the tree as a psychologically plausible substitute. Thus the
likelihood is then given by equation 4 if if xi ∈ h for all i,
and 0 otherwise. Note that ε is not a parameter, but just a
constant which is added to prevent the likelihood from going
to infinity for the nodes with height zero. Thus a fixed value
of ε = 0.05 is chosen and hence all nodes in Figure 2 are
shown at a height of 0.05 above their true heights reflecting
this value.

p(X |h) ∝ [1/size(h)]n (3)

p(X |h) ∝ [1/(height(h)+ ε)]n (4)

Posterior
The posterior reflects the learner’s belief that h is the true
meaning of C given observations X and the prior knowledge
about plausible word meanings. It is thus given by combining
the prior and the likelihood according to the the Bayes’ rule
as given in equation 5 if xi ∈ h for all i, and 0 otherwise.

p(h|X) ∝ [1/(height(h)+ ε)]n[height(parent[h])−height(h)]
(5)

Generalization
Xu & Tenenbaum (2007) defined a way to relate learner’s

beliefs about the word meaning encoded in p(h|X) to gen-
eralization behaviour. Once the learner has found the true
meaning of word C, given another example ’y’, it needs some
way to decide whether ’y’ belongs to the extension of C. If
p(X |h) = 1 for exactly one hypothesis (h = h∗) and 0 for
all others, then C applies only to those new objects y ∈ h∗.
However in a more general case, the learner should compute
the probability of generalization by averaging the predictions
of all hypothesis weighted by their posterior probabilities as
given by equation 6.

p(y ∈C|X) = ∑
h∈H

p(y ∈C|h)p(h|X) (6)

Note that in equation 6, p(y ∈C|h) = 1 if y ∈ h and 0 oth-
erwise. Moreover, p(h|X) = 0 unless the examples X are all
contained within hypothesis h. Thus the generalization prob-
ability gets reduced to the sum of posterior probabilities of all
hypotheses that contain both the new example ’y’ and the old
examples X as given by equation 7.

p(y ∈C|X) = ∑
h⊃y,X

p(h|X) (7)

Comparison of Sampling Techniques
Rejection Sampling : First, I built a small model using a
variant of rejection sampling on the hypothesis space shown
in Figure 1. Following approach was used to implement re-
jection sampling:

1. Calculate the prior weights of all nodes (nodes represent
hypothesis) and normalize them such that they lie between
[0,1].

2. Generate a multinomial distribution over the nodes based
on the prior weights and sample a node from the it.

3. Check whether all the examples provided are children of
this sampled node. If not reject this node sample and draw
another node from the multinomial.

4. If the node is the parent of all examples, then compute the
likelihood of the node.

5. Flip a biased coin with probability of heads equal to the
likelihood of the node.

6. If the coin lands head, accept the sample, otherwise reject
it and draw another node from the multinomial.

7. Repeat the above process, until the required number of
samples are obtained and generate a plot of the posterior.



The samples should converge to the posterior distribution
and the node h∗ having the maximum probability is the max-
imum a posteriori (MAP) estimate. Thus hypothesis h∗ is the
inferred meaning of the examples observed.

Markov Chain Monte Carlo : After I got the model work-
ing with rejection sampling on the small hypothesis space
(Figure 1), I decided to implement Markov Chain Monte
Carlo (MCMC) sampling. This was because I knew that re-
jection sampling will not scale very well to the large hypoth-
esis space in Figure 2. Following approach was used to im-
plement MCMC:

1. Define the target distribution which is given by equation 5.

2. Define a proposal function and a proposal distribution.

3. Create a node map to map the nodes to numbers between
[0,numbero f nodes− 1]. This was done to facilitate sam-
pling from the proposal and to easily capture dependence
of new samples on previous states.

4. Set the initial state ’x’ to 0.

5. Draw a node sample ’y’ from the proposal function and
check whether the sample lies in the valid range i.e.,
[0,numbero f nodes−1]. If not, set the probability p = 0.

6. If ’y’ lies in the valid range, compute probability p as a
product of the target ratio and the proposal ratio (as taught
in class, refer to the code in the Appendix).

7. Then generate a random sample u from a uniform distribu-
tion and set the new state to ’y’ if u < min(p,1), otherwise,
set the new state to the previous state.

8. Repeat steps 5-7 until the required number of samples are
obtained.

9. Remove the first 10,000 samples from the total samples
obtained (i.e., burn− in = 10000) and use a lag of 50. Use
the remaining samples to plot the posterior distribution.

Again, the samples should converge to the posterior distri-
bution and the node h∗ having the maximum probability is the
maximum a posteriori (MAP) estimate. However, in this case
none of the samples are rejected and hence the markov chain
converges to the posterior distribution much earlier than re-
jection sampling. For example, in an experimental, I found
that obtaining 50,000 samples required 50,000 iterations of
MCMC, but 173,967 iterations of rejection sampling. Thus
in this case, MCMC provided around 3.47 times speedup.

Comparison of Proposals : Since I was trying to estimate
the posterior distribution through MCMC, the state space of
my model was discrete and not continuous. In other words,
the state space consisted of the set of nodes in the hypothe-
sis space (Figure 2). This meant that my proposal needed to
return discrete values. Hence I decided to split my proposal
into a proposal function and a proposal distribution. Proposal

function was used to propose a new state and proposal distri-
bution was used to compute the density of the proposal for a
given state.

Figure 3 explains the three different proposals that I tried.
First, I experimented with them using the small hypothesis
space (Figure 1). Figure 4 shows the results obtained for each
of the three proposals with the small hypothesis space when
only one example i.e., 4 is provided to the model. From the
hypothesis space, you can see that 4 is the immediate child
of node d, but node b and node a are also its ancestors. Thus
node d should be the MAP and node b should have the next
highest probability followed by node a. From Figure 4A, it
is clear that the symmetric random proposal converges to the
correct posterior distribution. Moreover it has a good mixing
shown by the trace-plot and a good auto-correlation plot.

On the other hand, Figure 4B shows that the symmetric
equally likely proposal doesn’t converge to the target distri-
bution. The reason for this is clear from its trace-plot which
shows that the Markov chain gets stuck between states 0 and
1 (which corresponds to nodes a and b) and never reaches
the state 3 (node d). Thus this proposal doesn’t seem suit-
able for our target distribution as it carries the risk of getting
stuck in a local subspace without being able to span the en-
tire state space. Figure 4C shows that a variant of normal
proposal also does not converge to an accurate posterior dis-
tribution, although it seems to be doing better that the equally
likely proposal. There is no evidence of it being stuck in a
local subspace in this case (it has good mixing), however it
doesn’t generate the correct probabilities over the nodes in-
volved. Its auto-correlation plot also looks worse than the
other two cases.

Based on the above analysis it seemed like that symmet-
ric random proposal would be the best to use, however I also
tried using all three of them with the large hypothesis space
(Figure 2) to see how they scale. Figure 5 shows the results
obtained when three examples (16, 17, 18) from subordinate
category B are provided to the model as input. Figure 5A
shows that with the symmetric random proposal, the model
converges to the right posterior distribution with B having
the highest probability followed by F and J which are its ba-
sic level and superordinate level categories respectively. Fig-
ure 5B and Figure 5C show that mixing and auto-correlation
is still good with the large hypothesis space when using the
symmetric random proposal. On the other hand, the equally
likely and variant of normal proposals do worse with the large
hypothesis space. Both of them get stuck on the starting state
(Figure 5D, E). This is probably because the distance between
the starting state (which is set to 0 or node ‘LL’ be default)
and the acceptable states is too large that these two proposals
are unable to get there. Hence, both these proposals pose a
possibility of getting stuck in a local space without spanning
the entire state space.

As a result of the above analysis, I decided to use the sym-
metric random proposal as my proposal function. I also tried
to think about what other proposal function might be suit-



able for this application. Usually, we prefer to pick proposal
functions that are close to our target distribution. However,
for this application, the target distribution is dependent on the
observed examples and thus will be different for every dif-
ferent set of examples (since the examples will have different
hypothesis as their meanings). Thus, the proposal distribu-
tion needs to be very generic to be able to approximate all of
these distributions. The way the node map (mapping of nodes
to numbers from [0, number of nodes -1]) is constructed can
also impact which proposal works better especially in case
of dependent proposals (where the next state depends on the
current state). I constructed the node map in a depth first way
from the hypothesis space, such that the neighboring nodes
belong to the same superordinate category and each node is
closer to its children and its parent. However, this might not
be the most optimal way to construct the node map. Regard-
less, since I ended up using he symmetric random proposal,
the way the node map is constructed doesn’t matter since this
proposal function leads to independent sampling.

Results
All the results reported in this section were obtained through
MCMC, using the symmetric random proposal function with
the number of samples = 50000, burn-in = 1000, lag = 50.

Prediction results
As mentioned before, the main goal of the project was that
the model should be able to estimate which hypothesis is the
true meaning of word C when a set of examples of word C
are provided to it.

The prediction results of the model on the small hypothesis
space (Figure 1) are shown in Figure 6. You can see that the
model predicts the correct category (‘c’) as the MAP estimate
even when only one example from a subordinate category is
provided to the model (Figure 6A). However its’ confidence
level is relatively lower and distributed across the basic (‘b’)
and superordinate (‘a’) categories to which the example be-
longs. When we increase the number of examples shown to
the mode to three (Figure 6B), the model becomes more con-
fident of the subordinate category (‘c’) which the examples
belong to. Similarly, the model predicts the MAP estimate
with high confidence when three examples from basic and
superordinate categories are provided to it as shown in Fig-
ure 6C and Figure 6D respectively.

The prediction results of the model on the large hypoth-
esis space (Figure 2) are shown in Figure 7. You can see
that in this case, when only one example from a subordi-
nate category ‘F’ was provided, the model predicts the su-
perordinate category ‘EE’ as the MAP estimate instead of ‘F’
which is predicted as the second most probable category (Fig-
ure 7A). However, if we increase the number of examples to
three, then the model is able to accurately predict the sub-
ordinate category ‘F’ as shown in Figure 7C. Additionally,
Figure 7B and Figure 7D show that the model correctly pre-
dicts the basic level (‘J’) and superordinate (‘EE’) categories
when three examples of each of those categories are provided

to the model. Note that I expected the posterior distributions
to show a graded probability for the ancestors of the examples
provided. For example in Figure 7C, I expected the probabil-
ity of category ‘F’ to be the highest, followed by categories
‘J’, ‘W’, ‘BB’ and ‘EE’ (due to the structure of the hypothe-
sis space). This trend was observed in the result, except for
the probability of the superordinate category ‘EE’ which was
higher than expected. This preference for the superordinate
category ‘EE’ might be caused by a strong prior shown in the
Figure 2 (recall that the prior is proportional to the branch
length on the top of each node). It is important to point out
that I constructed the hypothesis space by reading off the val-
ues from the graph in Figure 2, hence this difference might
be caused due to inaccurate hypothesis space as well. Fur-
thermore, in their paper (Xu & Tenenbaum, 2007) mention
that the hypothesis space should be from [0,1] which is in-
consistent with the hypothesis space constructed by them in
the figure (which has an upper bound of around 0.925).

Generalization results

Figure 8: a, b: Predictions of the Bayesian model by (Xu &
Tenenbaum, 2007) without and with basic-level bias respec-
tively. c: Data from children in a psychological experiment
by Xu & Tenenbaum (2007). d: Data from Adults in a psy-
chological experiment by Xu & Tenenbaum (2007)

Another stretch goal of my project was that the model should
be able to generalize what it learns i.e., given an additional
example ‘y’, it should be able to decide whether ’y’ belongs
to the extension of C. In order to validate the generalization
results, the p(y ∈ C|X) computed from the model was com-
pared to the generalization judgments of children and adults
obtained through psychological experiments reported by Xu
& Tenenbaum (2007). Note that this comparison was done
by comparing graphs since I did not have access to the actual
results for a more rigorous comparison. Moreover, I used the
same examples which Xu & Tenenbaum (2007) used in their
experiments, to get the experimental data.

Generalization results from the small hypothesis space
(Figure 1) are shown in Figure 10. These results are averaged
over two sets shown in Figure 9A, which cover this hypoth-
esis space. For example to generate Figure 10A, one subor-
dinate example was provided to the model from each case 1
and case 2 (column 2), and the results obtained were aver-
aged. You can see that these results follow the same trend



Figure 3: Different proposal functions and proposal distributions used for MCMC. Each of A,B,C show proposal functions,
proposal distributions and the way they are used in the MCMC algorithm (refer to the code in the appendix). A: A variant of
normal proposal where the integer value of the sample drawn from a normal distribution is returned; the next state depends on
the previous state (Metropolis Hastings). B: A symmetric proposal which is equally likely to propose one state higher or one
state lower (Metropolis Algorithm). C: A symmetric random proposal which is equally likely to propose any state independent
of the previous state (A combination of Metropolis Algorithm and Independence Sampler).

as in the experimental data shown in Figure 8c. The model
shows graded generalization given one example, and more of
all-or-none like generalization at the level of the most specific
consistent hypothesis given three examples. However, quan-
titatively the probability values are different since we are just
using a self-constructed sample hypothesis space in this case.

Generalization results for the large hypothesis space (Fig-
ure 2) shown in Figure 11, were computed in a similar manner
using the data in Figure 9B, such that they covered examples
from all the three main clusters (Vegetable, Vehicle and Ani-
mal). You can see that these results are similar to Figure 8c.
The model captures most of the main qualitative and quanti-
tative trends except that the graded generalization given one
example is not accurate i.e., the probability of the superordi-
nate category in Figure 11A is higher than that of the basic
category, which is different from the experimental data. Ear-
lier in the prediction results of the model, we saw that the
superordinate category had higher probability than expected,
and it seems that the discrepancy which we see here in gener-
alization probability might be related to that. The results ob-
tained by Xu & Tenenbaum (2007) with their model shown
in Figure 8a for one example, are closer to the experimen-
tal data (Figure 8c) than my model. However, my results for
three examples (especially for the basic level category i.e.,
Figure 11C) are closer to the experimental data than their re-
sults.

Sensitivity with respect to the prior

I tried two additional priors to study their effect on the gener-
alization behaviour of the model.

Since the adults show a basic-level bias as discussed be-
fore, I added a bias in the prior that favors the three basic-
level hypotheses (nodes ‘J’, ‘R’ and ‘T’). The strength of the
basic-level bias is a parameter which I set to β = 40 in or-
der to fit the model results to the adult data shown in Fig-
ure 8d. On adding this parameter, the model captures most of
main qualitative and quantitative trends in the adult data in-
cluding graded generalization given one example (shown in
Figure 12A). Note that similar to the predictions of the model
with basic-level bias by Xu & Tenenbaum (2007) (Figure 8b),
my model also predicts higher probability given three exam-
ples from subordinate category (Figure 12B), relative to the
adult data shown in Figure 8d. However, my model seems
closer to the experimental result than their model given three
basic-level category examples (Figure 12C).

The second prior which I tried was an uninformative uni-
form prior and the generalization results obtained for the
same are shown in Figure 14 in the appendix. The general
qualitative trends can still be seen in the results but are much
less pronounced. The quantitative results specially for the one
example case are lost (do not match experimental data). This
implies that the prior plays an important role in getting the
same generalization behaviour as humans.

It was also found that the prior has the strongest effect



Figure 4: Results of comparing proposals using small hypothesis space. Posterior distribution, trace-plot, auto-correlation plot
and auto-correlation plot after introducing lag are shown for the 3 proposals. Number of samples = 50,000, burn-in = 10,000
and lag = 50 for each of them. A: Symmetric random proposal. B: Symmetric equally likely proposal. c: Variant of normal
proposal.

when only one example is observed. Figure 15 in the ap-
pendix shows the prediction results for the three priors:

• The original prior: Shows a preference for superordinate
category (node ‘EE’) due to its’ strong prior. The actual
subordinate category (node ‘F’) gets the second highest
probability.

• Prior with basic-level bias: Shows a basic level preference
given one example (similar to adults) and predicts node ‘J’
to be the MAP with a high confidence.

• Uniform prior: Shows a graded probability distribution
among the example’s ancestors with node ‘F’ being the
MAP as expected.

Discussion
We have seen the model was able to make accurate predic-
tions and the results have shown that the model’s behaviour is
qualitatively and quantitatively similar to people’s patterns of
generalization when the right hypothesis space and prior are

used. The similarity was higher in case of results for adults
(model with basic-level bias included), than in case of chil-
dren. This might be because the hypothesis space (Figure 2)
was constructed using the similarity judgments from adults
and its likely that children have a different hypothesis space
which changes with experience (for example, it has already
been shown that adults develop basic-level bias). Thus one
of the limitations of this model is that it doesn’t model the
development of this basic-level bias with experience. I think
it should be possible to model this as an instance of Bayesian
learning such that Bayesian learner comes to realize that the
basic-level object labels are used much more frequently than
the subordinate or superordinate level labels. This would be
an interesting area for future research.

We also saw the effect of priors on the model’s predic-
tions and generalization behaviour. We found that selecting
the right prior is important for getting the same generaliza-
tion behaviour as humans, and it affects the predictions of the
model the most when only one example is provided. This
is consistent with the fact that the word meanings learned
previously can constrain the meanings of new words to be



Figure 5: Results of comparing proposals using large hypothesis space. Number of samples = 50,000, burn-in = 10,000 and
lag = 50 was used in each case. A, B, C: Posterior distribution, trace-plot and auto-correlation plot using symmetric random
proposal. D, E: Posterior distribution and trace-plot using both equally likely and variant of normal proposals (both had same
plots).

learned. However, I don’t see any reason for a preference
for a superordinate category which was found when using the
original prior (equation 2). It is true that the superordinate
categories like animal, vegetable etc. are highly distinctive,
however there is no superordinate-level bias found in humans
during word learning. Thus this preference might be due to
the wrongly structured prior or because of manual error in
reading the node heights as discussed before and needs to be
further looked into.

Another possible area of future research is figuring out bet-
ter proposal function which might perform better than the
symmetric random proposal. Lastly, though the generaliza-
tion results obtained were close to the experimental data, they
might be improved by making the model more biologically
plausible i.e., similar to how our brain works. This can be
done by implementing the same Bayesian computations us-
ing a neural substrate such as the Neural Engineering Frame-
work (Eliasmith & Anderson, 2004). Though the improve-
ment is not guaranteed, this is an interesting avenue to explore
in future.
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Figure 6: Prediction results for small hypothesis space. Each of the figures show the posterior distribution generated by the
model when 1 or 3 examples from different categories are observed. A: Only one example (1) from subordinate category ‘c’ is
observed. B: Three examples (1, 2, 3) from subordinate category ‘c’ are observed. C: Three examples (1, 2, 4) from basic level
category ‘b’ are observed. D: Three examples (1, 4, 5) from the superordinate category ‘a’ are observed.

Figure 7: Prediction results for large hypothesis space. Each of the figures show the posterior distribution generated by the
model when 1 or 3 examples from different categories are observed. A: Only one example (22) from subordinate category ‘F’
is observed. B: Three examples (21, 24, 19) from basic level category ‘J’ are observed. C: Three examples (22, 16, 19) from
subordinate category ‘F’ are observed. D: Three examples (21, 28, 27) from the superordinate category ‘EE’ are observed.

Figure 9: Tables showing the input data used for generalization results. A: Input data for Figure 10. B: Input data for Figure 11.
The categories in round brackets in the first column indicate (subordinate, basic, superordinate) categories for each set of data.



Figure 10: Generalization results for small hypothesis space. Each of the figures show probabilities of generalization when new
example ‘y’ lies in the subordinate, basic or superordinate categories. A: Only one example from each subordinate category
in Figure 9A is observed and the results are averaged over the categories. B: Three examples from each subordinate category
are observed. C: Three examples from each basic level category are observed. D: Three examples from each superordinate
category are observed.

Figure 11: Generalization results for large hypothesis space. Each of the figures show probabilities of generalization when new
example ‘y’ lies in the subordinate, basic or superordinate categories. A: Only one example from each subordinate category
in Figure 9B is observed and the results are averaged over the categories. B: Three examples from each subordinate category
are observed. C: Three examples from each basic level category are observed. D: Three examples from each superordinate
category are observed.

Figure 12: Generalization results for large hypothesis space with parameter β set to 40 (plots are generated in the same way as
in Figure 11 with β = 40 instead of 1).



Appendix
All the code to implement this model was written using
Python programming language. However, while comparing
the proposal functions the results were output to numpy ar-
rays which were read using the R programming language.
This was done because it is easier to compare proposal func-
tions in R language by plotting the trace-plots and auto-
correlation plots. This can probably be done with Python too,
however I was already familiar with doing it in R, so it saved
some of my time. Both the python and R files are attached.

In order to generate the generalization plots, the results
from each of the runs over the main clusters in the hypoth-
esis space were written to python pickle files. The data stored
in these pickle files was then averaged in a separate script and
plotted. These pickle files and the python scrip to generate the
plots from them are also attached. Additionally, two csv files
were created to store the structure of the hypothesis spaces
and these are also attached.



Figure 13: The extensions of words that label object-kind categories overlapping in a nested fashion, similar to a tree structured
hierarchy of an object-kind taxonomy (Xu & Tenenbaum, 2007). Example: dog indicates a basic level category, animal is a
superordinate category and dalmatian, labrador etc. are subordinate categories.

Figure 14: Generalization results for large hypothesis space with a uniform prior. Plots are generated in the same way as in
Figure 11 but with a uniform prior.



Figure 15: Prediction results for large hypothesis space for three different priors. Each of the figures show the posterior
distribution generated by the model when only one example (22) from subordinate category ‘F’ is observed. A: Original prior
defined in equation 2. B: Prior in A with basic-level bias (β = 40) added to it. C: Uniform Prior.


